Applications pratiques de la dérivation.

1) Soit un cercle de métal, de rayon R, dans lequel on veut découper un triangle isocèle dont la surface soit maximale. Calculer x .

Rendered by QuickLaTeX.com

2) Un navire parcourt une distance D. La dépense horaire du combustible est proportionnelle au carré de la vitesse, on la note Cv^2 et la paye horaire du personnel est fixe, on la note C'. Déterminer la vitesse du navire pour que la dépense totale soit minimale. ( On négligera les autres dépenses..)

Continuer la lecture de Applications pratiques de la dérivation.

Probabilités continues

Soit \phi(M,M') une une fonction de deux points parcourant respectivement deux aires A et A' .
Si \phi varie dans un certain intervalle(\alpha,\beta) quelle est la probabilité pour que \phi soit comprise entre \gamma et \gamma+d\gamma

La probabilité cherchée est de la forme \theta(\gamma)d\gamma avec bien sûr

    \[\displaystyle\int_\alpha^\beta \theta(\gamma)d\gamma =1\]

.

Si M est fixe, la mesure de l’aire du secteur correspondants aux points M' tels que \gamma\leq \phi \leq \gamma+d\gamma est de la forme F(M,\gamma)d\gamma et la probabilité pour que M' soit dans ce secteur est \dfrac{1}{A'}F(M,\gamma)d\gamma

F pouvant être considéré comme constant sur un élément d’aire dx\;dy entourant le point M, on obtient finalement

\theta(\gamma)=\dfrac{1}{A\;A'}\displaystyle\iint_A F(M,\gamma) dx\;dy

Exemple 1:
M et M' étant deux point d’un segment [AB] de longueur a, déterminer la probabilité pour que MM' ait une longueur inférieure à \dfrac{a}{2}
Continuer la lecture de Probabilités continues

Une journée sans Maths …