Archives de catégorie : probabilités

Probabilités continues

Soit \phi(M,M') une une fonction de deux points parcourant respectivement deux aires A et A' .
Si \phi varie dans un certain intervalle(\alpha,\beta) quelle est la probabilité pour que \phi soit comprise entre \gamma et \gamma+d\gamma

La probabilité cherchée est de la forme \theta(\gamma)d\gamma avec bien sûr

    \[\displaystyle\int_\alpha^\beta \theta(\gamma)d\gamma =1\]

.

Si M est fixe, la mesure de l’aire du secteur correspondants aux points M' tels que \gamma\leq \phi \leq \gamma+d\gamma est de la forme F(M,\gamma)d\gamma et la probabilité pour que M' soit dans ce secteur est \dfrac{1}{A'}F(M,\gamma)d\gamma

F pouvant être considéré comme constant sur un élément d’aire dx\;dy entourant le point M, on obtient finalement

\theta(\gamma)=\dfrac{1}{A\;A'}\displaystyle\iint_A F(M,\gamma) dx\;dy

Exemple 1:
M et M' étant deux point d’un segment [AB] de longueur a, déterminer la probabilité pour que MM' ait une longueur inférieure à \dfrac{a}{2}
Continuer la lecture de Probabilités continues

LES ORIGINES DE LA LOI NORMALE

Ci dessous le long et douloureux calcul qui montre le lien entre loi binomiale et loi normale:

Point de départ, la formule de Stirling: n!\sim(\dfrac{n}{e})^n\sqrt{2\pi n}.

Dans une suite de n expériences, la probabilité d’obtenir \alpha et \beta fois les évènement A et B est donné par: P=p^{\alpha}q^{\beta}\dfrac{n!}{\alpha!\beta!}

Le terme le plus grand du développement de (p+q)^n correspond aux valeurs de \alpha et \beta les plus voisinnes de np et nq , donc on pose: a=np+x et b=nq+y .

On a alors

\ln n! \sim n\ln n-n+ \frac{1}{2}\ln (2\pi n)

et donc: \ln P\sim a \ln p+b \ln q+n \ln n-a \ln a-b \ln b+\frac{1}{2}\ln 2\pi n -\frac{1}{2}\ln 2\pi a-\frac{1}{2}\ln 2\pi \b -n+a+b

Comme n=a+b on obtient: n \ln n-a \ln a-b \ln b=a \ln{\frac{n}{a}}+b \ln{\frac{n}{b}}
Continuer la lecture de LES ORIGINES DE LA LOI NORMALE

Quelques exercices de Probabilité classiques

1) Trois livres identiques ont été rangés aléatoirement dans une armoire contenant cinq étagères, déterminer la probabilité pour que les trois livres se trouvent sur la même étagère .

2) Deux joueurs jouent avec deux dés, A gagne avec un total de 7 et B avec un total de 6. B joue en premier et ensuite A et B jouent alternativement. Déterminer la probabilité pour que A gagne .

3) Un joueur A lance deux pièces et un joueur B lance trois pièces, celui amenant le plus de fois Pile gagne, et en cas d’égalité on recommence. Quelle est la probabilité que B gagne ?

4) La probabilité pour qu’une clé se trouve dans un meuble est
égale à \dfrac{1}{3}. Ce meuble contient 7 tiroirs et 6 ont déjà été fouillés en vain. Quelle est la probabilité que la clé se trouve dans le dernier tiroir ?
Continuer la lecture de Quelques exercices de Probabilité classiques