A propos de quotients

On appelle relation d’équivalence sur un ensemble E toute relation binaire sur E qui est à la fois réflexive, symétrique et transitive.

Une telle relation \mathscr{R} peut se noter x\;\equiv y \;(\text{modulo} \mathscr{R} ).

Soit \mathscr{R} une relation d’équivalence sur un ensemble E, on appelle classe d’équivalence de x l’ensemble \bar{x} =\{ y \in E/ x \mathscr{R} y\}.

On appelle ensemble quotient de E par \mathscr{R} et on note E / \mathscr{R} l’ensemble des classes d’équivalence.

Si E est muni d’une loi interne T, on dit que \mathscr{R} est compatible avec T si et seulement si :

(x \mathscr{R} x' \land y \mathscr{R} y') \Rightarrow  (  x T y  )        \mathscr{R} (  x' T y')

Il existe alors une unique loi interne \bar{T} sur E / \mathscr{R} définie par :

\forall (X,Y ) \in (E / \mathscr{R})^2 ,\;\; \forall x \in X ,\;\; \forall y \in Y: X\bar{T} Y =\phi (x T y)\phi est la surjection canonique de E dans E / \mathscr{R}.

Si G est un groupe, toute relation d’équivalence \mathscr{R} compatible à gauche avec la loi de G est de la forme x^{-1}y   \in H où H est un sous-groupe de G.

Continuer la lecture de A propos de quotients

géométrie projective: Exemple de calculs

Résumé:
\bullet On se donne
une forme linéaire non nulle T \in E^* et on considère l’hyperplan vectoriel E_{\infty} défini par T. On pose P(E_{\infty}) =D_{\infty} (c’est un hyperplan projectif) et X = P(E )\setminus D_{\infty }

L’application qui à \overrightarrow{u} \in E_{\infty} et \bar{x}\in X associe \overrightarrow{u}.\bar{x} = \overline{x + T(x)\overrightarrow{u}} est bien définie. C’est une opération de E_{\infty} sur X , simplement transitive, de sorte qu’elle fait de X un espace affine sous E_{\infty}.
Si \bar{a}, \bar{b} sont deux points de X, le vecteur \overrightarrow{ab} est le vecteur de E_{\infty} défini par \overrightarrow{ab}=\dfrac{b}{T(b)}-\dfrac{a}{T(a)} , il est indépendant du choix des représentants des points.

Situation 1 (T=x+y+z)
Soit a(0,1,1) et b(2,0,1), \overrightarrow{ab}=(\dfrac{2}{3},-\dfrac{1}{2}, -\dfrac{1}{6})

Rendered by QuickLaTeX.com

Continuer la lecture de géométrie projective: Exemple de calculs

Les ensembles de nombre

On appelle ensemble naturel tout ensemble non vide et ordonné X qui vérifie les trois axiomes :

A_{1}) Toute partie non vide a un plus petit élément ;

A_{2}) Toute partie non vide et majorée a un plus grand élément ;

A_{3}) X n’a pas de plus grand élément.

Etant donnés deux ensembles naturels, il existe un, et un seul isomorphisme d’ensembles ordonnés de l’un sur l’autre.

L’isomorphisme ci-dessus permet d’« identifier » tous les ensembles naturels à l’un d’eux, que nous noterons \mathbb{N}

Continuer la lecture de Les ensembles de nombre

Exercices sur les angles.

 

1–Les hauteurs dans un triangle

Soit ABC un triangle quelconque, H le point d’intersection des hauteurs issues de A et B.

Rendered by QuickLaTeX.com

Les points A,B,A’,B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'A'},\overrightarrow{B'B})=(\overrightarrow{AA'},\overrightarrow{AB})

Les points C,A’,H et B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'C},\overrightarrow{B'A'})=(\overrightarrow{HC'},\overrightarrow{HA})

La mesure de l’angle (\overrightarrow{C'A},\overrightarrow{C'H}) est donc \dfrac{\pi}{2} ce qui démontre le concours des hauteurs dans un triangle.

2–Les longueurs des côtés d’un triangle sont proportionnelles aux sinus des angles opposés
Continuer la lecture de Exercices sur les angles.

Une journée sans Maths …