Probabilités continues

Soit \phi(M,M') une une fonction de deux points parcourant respectivement deux aires A et A' .
Si \phi varie dans un certain intervalle(\alpha,\beta) quelle est la probabilité pour que \phi soit comprise entre \gamma et \gamma+d\gamma

La probabilité cherchée est de la forme \theta(\gamma)d\gamma avec bien sûr

    \[\displaystyle\int_\alpha^\beta \theta(\gamma)d\gamma =1\]

.

Si M est fixe, la mesure de l’aire du secteur correspondants aux points M' tels que \gamma\leq \phi \leq \gamma+d\gamma est de la forme F(M,\gamma)d\gamma et la probabilité pour que M' soit dans ce secteur est \dfrac{1}{A'}F(M,\gamma)d\gamma

F pouvant être considéré comme constant sur un élément d’aire dx\;dy entourant le point M, on obtient finalement

\theta(\gamma)=\dfrac{1}{A\;A'}\displaystyle\iint_A F(M,\gamma) dx\;dy

Exemple 1:
M et M' étant deux point d’un segment [AB] de longueur a, déterminer la probabilité pour que MM' ait une longueur inférieure à \dfrac{a}{2}
Continuer la lecture de Probabilités continues

Applications pratiques de la dérivation.

1) Soit un cercle de métal, de rayon R, dans lequel on veut découper un triangle isocèle dont la surface soit maximale. Calculer x .

Rendered by QuickLaTeX.com

2) Un navire parcourt une distance D. La dépense horaire du combustible est proportionnelle au carré de la vitesse, on la note Cv^2 et la paye horaire du personnel est fixe, on la note C'. Déterminer la vitesse du navire pour que la dépense totale soit minimale. ( On négligera les autres dépenses..)

Continuer la lecture de Applications pratiques de la dérivation.

Uniquement avec les aires…

Pour commencer deux petits lemmes sur les aires :

\bullet Soient ABC et ABD deux triangles tels que (AB) et (DC) soient parallèles, alors \mathscr{A}(ABC)=\mathscr{A}(ABD)

Rendered by QuickLaTeX.com

On trace les parrallèles à (AB) et (AD) , elles se coupent en E, et l’aire de chaque triangle est égale à la moitié de celle du parallèlogramme ABED.

\bullet Soit ABC un triangle, Q un point de (CB) et P un point de (AQ), alors \dfrac{\overline{QC}}{\overline{QB}}=\dfrac{\mathscr{A}(QCA)}{\mathscr{A}(QBA)}…. =\dfrac{\mathscr{A}(QCP)}{\mathscr{A}(QBP)} pour les mêmes raisons… =\dfrac{\mathscr{A}(PCA)}{\mathscr{A}(PBA)} par différence (chevron)

Rendered by QuickLaTeX.com

On utilise le fait que ces triangles ont le même hauteur.

Continuer la lecture de Uniquement avec les aires…