A propos de quotients

On appelle relation d’équivalence sur un ensemble E toute relation binaire sur E qui est à la fois réflexive, symétrique et transitive.

Une telle relation \mathscr{R} peut se noter x\;\equiv y \;(\text{modulo} \mathscr{R} ).

Soit \mathscr{R} une relation d’équivalence sur un ensemble E, on appelle classe d’équivalence de x l’ensemble \bar{x} =\{ y \in E/ x \mathscr{R} y\}.

On appelle ensemble quotient de E par \mathscr{R} et on note E / \mathscr{R} l’ensemble des classes d’équivalence.

Si E est muni d’une loi interne T, on dit que \mathscr{R} est compatible avec T si et seulement si :

(x \mathscr{R} x' \land y \mathscr{R} y') \Rightarrow  (  x T y  )        \mathscr{R} (  x' T y')

Il existe alors une unique loi interne \bar{T} sur E / \mathscr{R} définie par :

\forall (X,Y ) \in (E / \mathscr{R})^2 ,\;\; \forall x \in X ,\;\; \forall y \in Y: X\bar{T} Y =\phi (x T y)\phi est la surjection canonique de E dans E / \mathscr{R}.

Si G est un groupe, toute relation d’équivalence \mathscr{R} compatible à gauche avec la loi de G est de la forme x^{-1}y   \in H où H est un sous-groupe de G.

Continuer la lecture de A propos de quotients

géométrie projective: Exemple de calculs

Résumé:
\bullet On se donne
une forme linéaire non nulle T \in E^* et on considère l’hyperplan vectoriel E_{\infty} défini par T. On pose P(E_{\infty}) =D_{\infty} (c’est un hyperplan projectif) et X = P(E )\setminus D_{\infty }

L’application qui à \overrightarrow{u} \in E_{\infty} et \bar{x}\in X associe \overrightarrow{u}.\bar{x} = \overline{x + T(x)\overrightarrow{u}} est bien définie. C’est une opération de E_{\infty} sur X , simplement transitive, de sorte qu’elle fait de X un espace affine sous E_{\infty}.
Si \bar{a}, \bar{b} sont deux points de X, le vecteur \overrightarrow{ab} est le vecteur de E_{\infty} défini par \overrightarrow{ab}=\dfrac{b}{T(b)}-\dfrac{a}{T(a)} , il est indépendant du choix des représentants des points.

Situation 1 (T=x+y+z)
Soit a(0,1,1) et b(2,0,1), \overrightarrow{ab}=(\dfrac{2}{3},-\dfrac{1}{2}, -\dfrac{1}{6})

Rendered by QuickLaTeX.com

Continuer la lecture de géométrie projective: Exemple de calculs

Les ensembles de nombre

On appelle ensemble naturel tout ensemble non vide et ordonné X qui vérifie les trois axiomes :

A_{1}) Toute partie non vide a un plus petit élément ;

A_{2}) Toute partie non vide et majorée a un plus grand élément ;

A_{3}) X n’a pas de plus grand élément.

Etant donnés deux ensembles naturels, il existe un, et un seul isomorphisme d’ensembles ordonnés de l’un sur l’autre.

L’isomorphisme ci-dessus permet d’« identifier » tous les ensembles naturels à l’un d’eux, que nous noterons \mathbb{N}

Continuer la lecture de Les ensembles de nombre

Exercices sur les angles.

 

1–Les hauteurs dans un triangle

Soit ABC un triangle quelconque, H le point d’intersection des hauteurs issues de A et B.

Rendered by QuickLaTeX.com

Les points A,B,A’,B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'A'},\overrightarrow{B'B})=(\overrightarrow{AA'},\overrightarrow{AB})

Les points C,A’,H et B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'C},\overrightarrow{B'A'})=(\overrightarrow{HC'},\overrightarrow{HA})

La mesure de l’angle (\overrightarrow{C'A},\overrightarrow{C'H}) est donc \dfrac{\pi}{2} ce qui démontre le concours des hauteurs dans un triangle.

2–Les longueurs des côtés d’un triangle sont proportionnelles aux sinus des angles opposés
Continuer la lecture de Exercices sur les angles.