Archives de catégorie : géométrie

Birapport (partie 1)

Birapport de quatre points:

Définition:

Soit D une droite projective et soient a,b,c,d quatre points de D, avec a,b,c distincts.
Soit h l’unique homographie de D surP^1(k) définie par h(a) = \infty, h(b) = 0, h(c) = 1.
On appelle birapport des quatre points a,b,c,d pris dans cet ordre l’élément h(d) \in P^1(k) = k \cup {\infty} et on le note [a,b,c,d].
Soit f : d \rightarrow d' une homographie. On a l’égalité :
[a,b,c,d] = [f(a), f(b), f(c), f(d)] .

Les perspectives seront par la suite des homographies particulièrement utilisées ainsi que les incidences : Soit D une droite et m un point n’appartenant pas à D. On appelle incidence l’ application qui à toute droite \delta passant par m associe l’unique point d’intersection x de D et \delta.

Calcul du birapport:

Soit D une droite projective et soient a,b,c,d quatre points de D, avec a,b,c distincts, on a la formule suivante:
Continuer la lecture de Birapport (partie 1)

A propos des paraboles….

Vous trouverez ci-desous quelques une des propriétés les plus remarquables des paraboles, propriétés qui la plupart du temps restent tout à fait valables pour des ellipses ou des des hyperboles (voire des droites sécantes…)

Proposition 1.

Soit P une parabole et soient a, b deux points de P. Les tangentes à P en a et b se coupent en c. Soit \Delta la paralléle à l’axe de symétrie de P passant par c. Elle coupe P en m en (ab) en n.

On a les propriétés suivantes :

1)m est le milieu de [cn],

2) n est le milieu de [ab],

3) la tangente à P en m est parallèle à (ab).

Rendered by QuickLaTeX.com

Proposition 2 .

Soit P une parabole et soient a, b, c, a', b', c' six points distincts de P (un hexagone). On appelle respectivement u, v et w les points d’intersection des droites (bc') et (b'c), (ca') et (c'a), (ab') et (a'b).

Alors,u, v et w sont alignés.
Continuer la lecture de A propos des paraboles….