Birapport (En cours de rédaction!)

Birapport de quatre points:

Définition:

Soit D une droite projective et soient a,b,c,d quatre points de D, avec a,b,c distincts.
Soit h l’unique homographie de D surP^1(k) définie par h(a) = \infty, h(b) = 0, h(c) = 1.
On appelle birapport des quatre points a,b,c,d pris dans cet ordre l’élément h(d) \in P^1(k) = k \cup {\infty} et on le note [a,b,c,d].
Soit f : d \rightarrow d' une homographie. On a l’égalité :
[a,b,c,d] = [f(a), f(b), f(c), f(d)] . les perspectives seront par la suite des homographies particulièrement utilisées.

Calcul du birapport:

Soit D une droite projective et soient a,b,c,d quatre points de D, avec a,b,c distincts, on a la formule suivante:
Continuer la lecture de Birapport (En cours de rédaction!)

Exercices sur les angles.

 

1–Les hauteurs dans un triangle

Soit ABC un triangle quelconque, H le point d’intersection des hauteurs issues de A et B.

Rendered by QuickLaTeX.com

Les points A,B,A’,B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'A'},\overrightarrow{B'B})=(\overrightarrow{AA'},\overrightarrow{AB})

Les points C,A’,H et B’ se situent sur un même cercle, on en déduit:

(\overrightarrow{B'C},\overrightarrow{B'A'})=(\overrightarrow{HC'},\overrightarrow{HA})

La mesure de l’angle (\overrightarrow{C'A},\overrightarrow{C'H}) est donc \dfrac{\pi}{2} ce qui démontre le concours des hauteurs dans un triangle.

2–Les longueurs des côtés d’un triangle sont proportionnelles aux sinus des angles opposés
Continuer la lecture de Exercices sur les angles.

LES ORIGINES DE LA LOI NORMALE

Ci dessous le long et douloureux calcul qui montre le lien entre loi binomiale et loi normale:

Point de départ, la formule de Stirling: n!\sim(\dfrac{n}{e})^n\sqrt{2\pi n}.

Dans une suite de n expériences, la probabilité d’obtenir \alpha et \beta fois les évènement A et B est donné par: P=p^{\alpha}q^{\beta}\dfrac{n!}{\alpha!\beta!}

Le terme le plus grand du développement de (p+q)^n correspond aux valeurs de \alpha et \beta les plus voisinnes de np et nq , donc on pose: a=np+x et b=nq+y .

On a alors

\ln n! \sim n\ln n-n+ \frac{1}{2}\ln (2\pi n)

et donc: \ln P\sim a \ln p+b \ln q+n \ln n-a \ln a-b \ln b+\frac{1}{2}\ln 2\pi n -\frac{1}{2}\ln 2\pi a-\frac{1}{2}\ln 2\pi \b -n+a+b

Comme n=a+b on obtient: n \ln n-a \ln a-b \ln b=a \ln{\frac{n}{a}}+b \ln{\frac{n}{b}}
Continuer la lecture de LES ORIGINES DE LA LOI NORMALE

Une journée sans Maths …